Caribbean Offshore Wind: Delivery strategy; resource and market analysis; and a five year roadmap

Presented by Gareth Davies, Aquatera (gareth.davies@aquatera.co.uk); on behalf of the project team of CCREEE, Aquatera and the Carbon Trust

Transformational change

- Global warming is accelerating faster than anybody predicted
- The technological solutions have proven more resilient abd affordable than feared
- The mindset is breaking
- Turmoil in energy markets is accelerating the economic imperative
- The foundations in the Caribbean are gaining strength
- We need to change the mentality to delivery mode!

To be successful with new technology you need to understand mentality and habits and how to influence them

The strategy –

- Explore the options for offshore wind as a regional contributor to carbon transition
- Consider this across CARICOM, associated countries and CDB members
- Take into account local conditions, circumstances, strengths, weaknesses, opportunities and threats
- Undertake the analysis at a island by island and place by place level
- Establish a plan for five year, 2028 first wind delivery
- Five main workstreams
 - Regulatory review
 - Finance appraisal
 - Resource and market assessment
 - Identification of optimal development pathways (if they exist)
 - Roadmap to success

"Our mission should we choose to accept it...."

Key resource suitability factors

The key factors that establish whether a resource might be suitable in a particular area are quite numerous:

- These include factors relating to the strength or scale of the prime resource itself
- These are also closely linked to the periodicity of the resource over short term (seconds/minutes); medium term (hours/days); long term (weeks/months); seasonal; interannual; climate trending
- They include factors relating to the physical forces and dynamics of putting structures into that environment
- They include extreme survival conditions
- They also include key proximity factors
- There are also the key ecological, social and economic sensitivities and features that need to be taken into account. The patterns of many of these factors are also directly linked to the resources themselves

Building a more sustainable energy system

There are a number of key steps or activities involved in building more sustainable energy systems. These include:

- Creating a shared VISION
- Checking on FEASIBILITY and verification of approach
- Insightful, and appropriate PLANNING
- Gaining the necessary FINANCE
- Establishing a robust, effective and efficient DESIGN
- IMPLEMENTATION of supply, fabrication, deployment and staffing
- OPERATION of services and facilities
- MAINTENANCE of equipment and systems
- ADAPTATION to change
- RE-ENERGISE, REPAIR and REPLACEMENT where needed
- DECOMMISSIONING of systems that have served their purpose

Building an enduring energy system of the future

Inter-American Development Bank

Strategy; resource and market analysis; and a five year roadmap

Inter-American Development Bar

RADMApp resource and market analysis

- RADMApp is a well established resource and market mapping tool which has been used all over te world across many different sectors
- 250 m resolution
- Commercial development standard analysis
- Flexible model that can be updated as new and better data emerges

Mapping inputs

Wind reso	urces	Other reso	ources	Technical	factors	Infrastruct	ture	Cost factors		
Speed Direction Capacity factor Daily pattern Seasonal pattern Annual variability Fatigue forces Extreme forces		Oil Gas Coal Biomass Geotherm Tidal Wave Solar	ilWater depthShipyardsasSeabed typeLaydown areasbalSeabed gradientBerthing portsomassEarthquakesGrid infrastructureeothermalHurricanesFuel infrastructuredalConnectivity routesVessel availability/aveLandfallsSupply chainblarinfrastructureCapacity		areas oorts tructure tructure ilability ain	Distance from market Distance from port Labour costs Water depth Wave exposure Site uniformity				
	Other sea users Shipping Cables Pipelines Oil & gas platforms Fishing areas Tourism areas Coastal visibility		Wildlife Protected a Whale brea Turtle brea Coral Seagrass Mangroves Migrating	areas eding eding 5 oirds	Fiscal facto Planning p Energy ma Tax regime Capital flow Customs	ors rocesses rkets s vs	Finance iss Availability Impact inve levels Financial st Local finan Appetite fo investent	of capital esting cability ce advice or co-		

Baseline input maps – over 30 so far

RADMApp score sheet

Wind speed patterns across the Caribbean

UK Government

Inter-American

Development Bank

Gaquatera

ntal services and product.

TRUST

Views of offshore wind farms

DB Inter-American Development Bank

Overall assessment founded wind

Overall assessment floating wind

Inter-American Development Bank

Guyana and Suriname

 The wide continental shelves of Guyana and Suriname offer by far the largest development capacity and particularly for founded turbines there are extensive areas with quite high suitability. The availability of supporting infrastructure an people with the fast growing oil and gas sector here may be challenging. Wind could offer a pathway for Green Guyana aspirations, especially in some CSR funds can be liberated from the oil and gas sector

Inter-American

Development Bank

aouaterc

UK Government

Trinidad, Tobago, Grenada, Grenadines and Barbados

 Most potential in terms of capacity and in terms of suitability in Trinidad where supporting infrastructure and markets are most developed. Key founded hot spot in Gulf of Paria, floating off norther Trinidad coast. Grenada and Grenadines have some potential but at low suitability. Barbados only small potential near to shore

Development Bank

California industrial production centre

Inter-American Development Bank

DB

Antigua, Barbuda, Anguila and British Virgin Islands

• Large capacity area indicated but at low suitability. Main opportunity may be for more limited founded developments in suitability hotspots west of Antigua/Barbuda and west of BVI. Supporting infrastructure will be a key challenge as well as extreme conditions resilience

UK Government

Inter-American

Development Bank

oaatera

Bahamas

 Some potential in NW, near to population centres and US mainland market. Floating wind has most capacity but at low suitability. Smaller founded area has a greater suitability potential

UK Government

Inter-American

Development Bank

aouatero

Jamaica

 Founded has much better prospects that floating in Jamaica. Large area of south coast indicates high suitability but this area is quite close to shore and may have extensive coral reef habitat present. Pedro bank has large area potential but mid range in term of suitability. Nevertheless a key regional and national opportunity

UK Government

Inter-American

Development Bank

aoaaterc

Pedro Bank, Jamaica

Figure 9. Marxan Scenario 2: Conservation and fishing targets based on variable goals with designated and proposed protected areas locked-in to the solution

TRUST

Strategy; resource and market analysis; and a five year roadmap

Inter-American Development Bar

Full activities associated with offshore wind

- There are many occasions when there are discussions or analysis about the economic and supply chain opportunities associated with offshore wind
- To date all of the materials and analysis produced have focused upon a very narrow 'manufacturing' focus of activity
- This narrow focus fails to recognise major areas of opportunity and particularly those opportunities linked to the less industrialised activities
- For a community such as Orkney the range of economic enragement activities needs to be fully considered and managed

UK Government

• The listing opposite provides a start.....

Preparation activities

- Policy and governance
- Market mapping
- Site prospecting
- Business and commercial planning
- Investment and investment brokering
- Programme management
- Pre-development planning
- Societal alignment

Delivery activities

- Power generation and export facilities
- Port & support bases
- Airport base
- Support vessel fleet
- Support aircraft/drones
- Power aggregation, storage and conversion
- Power transmission and transport
- End user market transition
- Sector inspection, control, weather monitoring, emergency response

Additional capacity aspects

- Local community and supply chain capacity
- Workforce housing and social provisions
- Skills development, training and recruitment
- Compensation, offsetting, alternatives for disadvantaged sea users
- Workforce transition from sunset to sunrise sectors
- Export co-ordination for established skills, services and products
- Finance, insurance and legal services
- Tourism and other public interfaces

Full project lifecycle interests

All delivery activities

- Power generation and export facilities
 - turbines, substations, cabling
- Ports, support bases, airport
 - component shipping, turbine aggregation & deployment, operations support, major maintenance and decommissioning
- Support vessel and aircraft fleet
 - Tugs and workboats, component delivery, assembly, tow-out/in, maintenance, survey and monitoring, USV, UAV drones
- Power aggregation, storage and conversion
 - sub-stations, switching stations, batteries, hydrogen (ammonia)
 plant etc
- Power transmission and transport
 - cables, pipelines, shipping activities as well as product distribution
- End user market transition
 - housing, offices, industry, public buildings, vehicles, ships, aircraft etc
- Sector inspection and control, weather monitoring, emergency response capacity
 - locations, readiness, comms, response capacity

Delivery sub-tasks for each activity)

- Commercial management & finance
- Facility/asset operations management
- Regulations and standards
- Development planning and consenting
- Build core facilities/equipment
- Deliver balance of plant/infrastructure
- Installation and commissioning
- Operations and maintenance
- Deliver balance of services (wider supply chain)
- Decommissioning
- Meet balance of responsibilities (overall governance)

Capacity definitions for each criteria

	Capacity	None Weak		Moderate		Strong	Very strong	
	Description	None	We	/eak	Moder	ate	Strong	Very strong
Local project ownership	Capacity of the Country to own or part-own a industrial development project	No potential or candidates	On No	ne candidate o experience	Few ca No/on	ndidates e-off experience	Many candidates but limited experience	Many candidates and much experience of project ownership
Professional services	Size and diversity of professional service available withing a country: legal, finance, environ, maritime etc	No services	Fey cor exp	ew small-scale service ompanies, no xperience	Moder No/on	ate services, e-off experience	Extensive services but limited experience	Extensive services and wide applicable experience
Regulation	Status of existing regulations and capacity for revision and update	No regulatory basis project developmen	for Bas t cap fra exp	asic building blocks an apacity to develop amework, no xperience	d Partial No/on	framework e-off experience	Established framework but limited experience	Established and proven regulatory framework for projects
Raw physical resources	The suitability of physical conditions in a country	Not at all suitable, a barrier to progress	Co use ma	onditions possible to se but very difficult to take economic, safe et	Sub-op likely t c operat	timal conditions, o be expensive to e is	Good conditions overall but a few outliers	Optimal conditions for safe, reliable, low cost and profitable development
Planning constraints	These are the factors that may restrict the freedom to operate due to competing interests and incompatibility	No offshore wind possible at all						Case by case system in place and strong local alignment
Component supply	The extent to which a given country can supply components seeded for wind project delivery	No existing equipme supply chain and no development ambiti	ent Ca bu ons	apacity and willingnes ut not yet operational	s Smalle and as manuf compo	r scale engineering sembly of actured ments only	Medium scale engineering capacity with some capacity for primary production as well as range of assembly experience	Numerous smaller scale, wide suite of medium scale components and some capacity with large scale components

DB Inter-American Development Bank

Offshore wind support capacity in each country

	Capacity		Nor	าย		We	ak		Мо	dera		Strong Very strong										
		Ang	Ant & B	Bah	Barb	Bel	Ber	BVI	CI	Dom	DR	Gre	Guy	Hai	Jam	Mon	N& StK	St Luc	StV & Gr	Suri	Tri & Tob	Tur & Cai
Professional services																						
Raw resources (wind)																						
Raw resource (depth)																						
Environmental constraints																						
Component supply																						
Support vessels																						
Ports		PR			T&T			PR		Mart		T&T						Mart	T&T			
Energy handling																						
Local energy market size		15	102	395	286	400	63	31	62	74	10800	108	700	11000	2900	5	55	179	110	500	1400	35
Local energy market value		30+	30+	15	30+	15	50+	30+	30+	30+	30+	30+	15	30+	30+	30+	30+	30+	30+	15	10	30+
Cable connections																						
Remote energy markets		Isles	Isles	USA	T&T	Cent Am	?	PR	Isles	Isles	PR	T&T	Sth Am	Ja/DR	Hai	Isles	PR	Isles	Isles	Sth Am	SA & Isles	

Road map steps – specification for the project(s)

Roadmap topic	Specificat ion	At November workshop	2023	2024	2025	2026	2027	2028
Project planning	The ongoing and supporting works through to ownership entity taking control	Prepare and agree terms of reference for early project development team	Work plan for 2024 and 2025 Outline proposals submitted to sponsor agencies	Ongoing works approved and backed by sponsors in Q1. Work continues as far as possible through in-kind and elsewhere supported efforts	Kick-off team preparing for handover to operating entity, with residual responsibility as mutually agreed	Kick-off team increasingly move onto follow on projects and the main project gains momentum		
Phases of project		Objectives and concept validation	Option evaluation	Option selection followed by detailed planning and design Planning and licensing work	Optimise approach and pre- procurement negotiations Planning and licensing work completed	Procurement	Mobilise all maritime resources Build major components and assemble them	Install, commission and operate
Type of project	Offshore wind	Confirm whether the project should link into geothermal, solar or biomass, gas or diesel power for balancing purposes	Confirm how other generation and storage capacity will interface with this project	Develop plans for project generation capacity alongside other system adaptations				
Scale of project	>50 MW, < 100 MW	Confirm envelope of aspiration in terms of capacity. 50-100 MW will likely need to have progressive buildout capacity to be fully commercial	Work with agreed scale, consider possible expansion, replication strategies at future dates	Establish a techno-economic cost and revenue model for the project so that any capacity linked issues can be quickly examined and resolved	Verify the financial viability of the progressive phases of the project.		Build out the first 50-100 MW of turbine capacity along	
Location of project	To be determined; needs 30 km2 of space to be practical	Confirm that the hot-spots identified so far are a reasonable basis for ongoing work, with additional if needed	A clear ranking of the prospective locations with full SWOT assessment for each & comparative metrics to help selection in 2024	Full consultation and survey activity for the prime site(s), with back-up/adaptive strategies fully available if needed				
Project cost profile	What budget is needed year on year, assume 50- 100 MW	US\$200,000	US\$100,000	US\$2 million	US\$4 million	US\$10 million	US\$50-100 million	US\$50-100 million
Turbines	5 to 10 of 5-15 MW turbines depending upon availability	Confirm the number and size range of the turbines – establish any shortlist manufacturers and delivery timescales	Preliminary long list of possible turbines – make, size, spec, source, delivery date etc	Enter into preliminary negotiations leading to heads of terms agreement(s). Suggest progressing with three/four manufactures.				
Cables	<50 km of subsea cable	Confirm maximum length of cable and indicative delivery timescales	Preliminary list of possible cable suppliers with indicative per km costs and delivery dates	Establish a preliminary cabling plan and short list possible suppliers				
Port facilities	Turbine assembly & integration; safe haven; workboat berthing port, operations base, maintenance base	Confirm any existing infrastructure, concepts for development infrastructure and delivery timescales	Preliminary contact with most prospective ports	Development of a port facilities plan which links with the vessels plan and other facility delivery elements				

DB Inter-American Development Bank

Community interests and capacity

Ownership – host community

Finance and management – host community

Regulation

Professional services community

Supply chain capacity building

Resource communities

Constraints - Sea-user & landscape communities

Components Turbine, cable & mooring/foundation manufacturing communities

Support vessels – maritime community

Support base & service port communities

Energy conversion station community

Local end-user/market communities

Energy connection communities

Remote end-user/market communities

UNITARY

PARTNERSHIP

COLLABORATION (balanced or asymmetric)

Offshore wind within an overall decarbonisation strategy

Overall

- 15 GW geothermal; 130,000 GWh
- 4 GW wind at 50% CP, 17,000 GWh
- 10-20 GW wind at 30% CP; 26,000 52,000 GWh
- 7 GW of solar at 18% CP; 11,000 GWh
- 100 MW wave at 30% CP; 260 GWh
- 50 MW tide at 25% CP; 108 GWh
- 500 MW micro gen solar; 783

Total indicative regional output 185,000 – 210,000 GWh/year

Inter-American Development Bank

